
 
* Corresponding Author 

A New Method for Transformation Techniques in Secure 

Information Systems 

Hodjatollah Hamidi* 
Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran 

h_hamidi@kntu.ac.ir 

 

Received: 04/Jan/2015            Revised: 03/Jan/2016            Accepted: 23/Jan/2016 

 

Abstract 
The transformation technique relies on the comparison of parity values computed in two ways. The fault detection 

structures are developed and they not only detected subsystem faults but also corrected faults introduced in the data 

processing system. Concurrent parity values techniques are very useful in detecting numerical error in the data processing 

operations, where a single fault can propagate to many output faults. Parity values are the most effective tools used to 

detect faults occurring in the code stream. In this paper, we present a methodology for redundant systems that allows to 

detect faults. Checkpointing is the typical technique to tolerate such faults. This paper presents a checkpointing approach 

to operate on encoded data. The advantage of this method is that it is able to achieve very low overhead according to the 

specific characteristic of an application. The numerical results of the multiple checkpointing technique confirm that the 

technique is more efficient and reliable by not only distributing the process of checkpointing over groups of processors. 

This technique has been shown to improve both the reliability of the computation and the performance of the 

checkpointing. 

 

Keywords: Transformation Techniques; Information Systems; Redundancy; Checkpointing. 
 

 

1. Introduction 

The checkpointing of approaches considers the 

specific characteristic of an application and designs fault 

tolerance schemes according to the specific characteristic 

of an application [1]. 

Transformation techniques is a class of approaches 

which tolerant byzantine failures, in which failed 

processors continues to work but produce incorrect 

calculations [2]. The transformation techniques approach 

transforms a system that does not tolerate a specific type 

of fault, called the fault-intolerant system, to a system that 

provides a specific level of fault tolerance, namely 

recovery [3]. In transformation techniques, applications 

are modified to operate on encoded data to determine the 

correctness of some mathematical calculations. The 

Transformation techniques of approaches can mainly be 

applied to applications performing linear algebra 

computations and usually achieves a very low overhead. 

One of the most important characteristics of this research 

is that it assume a fail-continue model in which failed 

processors continues to work but produce incorrect 

calculations [4-5]. 

Transformation techniques can be tuned to provide the 

desired fault tolerance e.g., single error detection, single error 

correction, etc. For some computations, transformation 

techniques can be implemented with low overhead as shown 

in [6] and [7]. Transformation techniques applies error 

control codes to the data such that errors are detected and in 

some cases located and corrected. An example of 

transformation techniques is to encode matrices by adding 

checksum rows or columns as discussed in [1], [8]. 

Checksum encoding is used to generate what is called a 

“checksum matrix” from the original matrix.  

Faults in numerical data processing may be detected 

efficiently by using parity values associated with real 

number codes, even when inherent round off errors are 

allowed in addition to failure disruptions. The basic 

approach for protection was discussed in [9] and has been 

expanded in many ways since, e.g., [10], [11], [12]. The 

real number convolutional codes discussed here allow 

data and parity values to be processed in a continuous 

fashion unlike block real number codes which require 

data and parity segmentation. There are many 

applications where such convolutional codes can provide 

protection including satellite, communication, signal 

processing, and large data processing systems. 

Transformation techniques for arithmetic and 

numerical processing operations is based on linear codes. 

G. Bosilca et al. [13] for high-performance computing, 

propose a new transformation techniques method based 

on a parity check coding. Redinbo [14-16] presented a 

method to Wavelet Codes into systematic forms for 

Algorithm-Based Fault Tolerance applications. This 

method employ high-rate wavelet codes along with low-

redundancy which use continuous checking attributes to 

detect the errors, in this paper since their descriptions are 

at the algorithm level can be applied in hardware or 

software. But, this technique is suited to image processing 

and data compression applications and is not a general 

method. Also, other constraint is on burst-error due to 

computational load high relatively. Moreover, there is 



 

Hamidi, A New Method for Transformation Techniques in Secure Information Systems 

 

20 

onerous analytical approach to exact measures of the 

detection performances of the transformation techniques 

technique applying wavelet codes.  

The paper is organized as follows: In section 2, we 

discuss architecture of the transformation techniques 

technique. In section 3, we propose the error correction 

system. In section 4, we discuss Factorization. In section 

5, we Analysis Check pointing. In section 6, to be 

discussed conclusions. 

2. Architecture of Transformation Techniques 

To achieve fault detection and correction properties of 

this code in a linear process with the minimum overhead 

computations [15], we propose the architecture in Fig. 1. 

The advantage of transformation technique is that 

errors which are caused by permanent or transient failures 

in the system can be detected and corrected by using a 

very low overhead and at the original throughput. Real 

number codes involve symbols that have real or integer 

values as opposed to classic binary codes. The real 

number convolutional codes hold great promise of 

protecting many data processing subsystems. There are 

times when the error detection capabilities of 

transformation techniques are not enough. Concurrent 

error correction at the data-level for compensating the 

effects of intermittent failures avoids disrupting the data 

flow to react to detected errors. Convolutional codes 

which employ real-number symbols are difficult to 

decode because of the size of the alphabet such codes find 

applications in both fault-tolerance support for signal 

processing subsystems and in channel coding for 

communication systems. In order to achieve fault 

detection and correction properties of convolutional code 

in a linear process with the minimum overhead 

computations, the architecture is proposed. For error 

correction purposes, redundancy must be inserted in some 

form and convolution parity codes will be employed, 

using the transformation technique. A systematic form of 

convolutional codes is especially profitable in the 

transformation technique detection plan because no 

redundant transformations are needed to achieve the 

processed data after the detection operations. To achieve 

fault detection and correction properties of convolution 

code in data processing with the minimum additional 

computations, the block diagram is proposed in. The data 

processing operations are combined with the parity 

generating function to provide one set of parity values. 
 

 

Fig. 1. Our architecture of transformation techniques  

We have modeled faults in a linear process block with 

module fault A while the encoder and structured 

redundancy faults are modeled with modules B and C. 

Since these two last faults contribute in syndrome 

additively we can delete one of them without any 

degradation. Convolutional codes are usually used over 

the transmission channels, through which both 

information and parity bits are sent. The main architecture 

is similar to a normal transformation techniques  scheme 

except of the structured redundancy and delay line in the 

information pass which replace the parity generator part 

of a systematic Convolutional encoder. The upper way is 

the normal Process data flow which passes through the 

nonlinear process block and then fed to the Convolutional 

encoder to make parity sequence the structured 

redundancy. So the syndrome sequence is a stream of 

zero or near zero values in normal operation [17]. 

2.1 Redundant Implementation 

In order to avoid replication when constructing fault 

tolerant dynamic systems, we replace the original system 

with a larger, redundant system that preserves the state, 

evolution and properties of the original system - perhaps 

in some encoded form. We impose restrictions on the set 

of states that are allowed in the larger dynamic system, so 

that an external mechanism can perform error detection 

and correction by identifying and analyzing violations of 

these restrictions. The larger dynamic system is called a 

redundant implementation and is part of the overall. 
 

 

Fig. 2. Fault tolerant structure 

Fault tolerant structure shown in Fig. 2,[18], the input 

to the redundant implementation at time step t, denoted by 

e(x[t]), is an encoded version of the input x [t] to the 

original system; furthermore, at any given time step t, the 

state qs[t] of the original system can be recovered from 

the corresponding state qh[t] of the redundant system 

through a decoding mapping L (i.e., qs[t] = L(qh[t])). Note 

that we require the error detection/correction procedure 

to be input-independent; so that we ensure the next-

state function is not evaluated in the error-correcting 

circuit [19]. 

 



 

Journal of Information Systems and Telecommunication, Vol. 4, No. 1, January-March 2016 21 

 

Fig. 3. Reliable state evolution using unreliable error-correction 

This approach uses the scheme shown in Fig. 3 but 

allow failures in both the redundant implementation and 

the error-correcting mechanism. Clearly, since all 

components of this construction are allowed to fail, the 

system will not necessarily be in the correct state at the 

end of a particular time step. What we hope for, however, 

is for its state to be within a set of states that correspond 

to the correct one: in other words, if a fault-free error 

corrector/decoder was available, then we would be able to 

obtain the correct state from the possibly corrupted state 

of the redundant system. This situation is shown in Fig. 3, 

[20]: at the end of each time step, the system is within a 

set of states that could be corrected /decoded to the actual 

state (in which the underlying system would be, had there 

been no failures). Even when the decoding mechanism is 

not fault-free, our approach is still desirable because it 

guarantees that the probability of a decoding failure will 

not increase with time in an unacceptable fashion. 

3. Error Correction System 

There is no easy analytical approach to accurate 

measures of the detection performances of the 

transformation technique using convolution codes. Thus, 

a series of simulations provide estimates of the 

probability of detection and miss. Convolutional codes 

offer a natural protection method for lossless compression 

systems. A high rate Convolutional code over the ring of 

real corresponding to the arithmetic format can be used to 

dictate parity numbers that are inserted periodically in the 

input to the source encoder, as shown in Fig. 4, [16]. The 

parity values are compressed along with the normal data 

and the compressed stream is passed through the channel 

to the decoder. The decoder extracts the data and the 

inserted parity numbers. These parity values are 

compared with locally regenerated parity values. These 

comparisons detect error conditions and, when 

appropriate, error correction is engaged. A large class of 

burst-correcting Convolutional codes produces a single 

parity value for each group of data numbers. This 

protection method has a small impact on the overall 

compressing efficiency, especially for high rate codes. 
 

 

Fig. 4. Joint source-channel coding: embedding Convolutional code 
parity in compressed and transmitted data. 

Powerful efficient Convolutional codes can be used to 

define arithmetic Convolutional codes that operate on the 

computational structures of many data processing systems. 

The encoding and detecting operations employ standard 

computational resources. When errors at the value level 

are detected, standard binary decoding algorithms are 

used in an iterative feedback manner to correct values 

using syndrome processing methods. The general flow of 

the feedback decoding method is shown in Fig. 5, [14]. 
 

 

Fig. 5. Iterative syndrome decoding 

Random data were encoded into convolutional code 

words and low level error values with variances’   
  were 

added. The high level error values variances’   
  and 

probability p were added also. The syndromes of the 

resulting corrupted code words were analyzed and if any 

syndrome’s component exceeded a threshold     √  
  . 

These error locations were positioned at exact integer 

index values. The simulations evaluated three 

convolutional codes, all with 7 parity positions indicating 

triple error correction capability, of lengths 32, 39, and 50: 

(32,25), (39,32), (50,43). The low-level error variances 

  
 -6

, a very high choice so as to examine 

the detrimental effects on the detection and correction 

operations. The probability of code word error is plotted 

in Fig. 6 for the three selected convolutional codes. The 

fixed point input data used m=8 bits while the floating 

point input was to the precision of MatLab representation. 

The fixed-point encoded data always had better code 

word error probabilities. 

This section provides typical detection performance 

results using the designed error detection strategies. The 

simulation process indicated that round off errors were on 

the order of 10
-11

 so the necessary thresholds were chosen 

well above this level. Consider the convolutional code 

with error injection values modeled by a Gaussian noise 

source. The experiment results show that when errors 



 

Hamidi, A New Method for Transformation Techniques in Secure Information Systems 

 

22 

were injected into the system, is on the order of 10
-10

. The 

error detection performance is dependent on the error 

variance and the selected detection threshold. Fig. 7(a) 

displays three detection performance curves of the 9/7 

convolutional code corresponding to single errors with 

three different variances:       
 ,       

 ,       
 , 

where   
  is the variance of input data. 

 

 

Fig. 6. Probability of Code word Error for Three Codes 

(a) The fixed point input data (b) The fixed-point encoded data 

(  
        ،   

    ). 

The results show that the system has high detection 

performance when the threshold is in the range from 10
-10

 

to 10
-4

 but decreases as the detection threshold increases. 

Fig. 7(b) shows the range of excellent performance is 

smaller than that of the forward transform (10
-10

 to 10
-4

). 

Table 1 summarizes these simulation results. The 

detection performance depends on the power of the code 

supporting the checking capabilities.  
 

 

Fig. 7. Error detection performance of the proposed design model for: 
(a) 9/7 Convolutional code, single error (b) 9/7 Convolutional code, 

double error. (      
  ,       

  ,       
 ) three different variances: 

Table 1. Detection Performance 

Double Error Single Error 

Percent Detection Injection Percent Detection Injection 

100% 4096 4096 100% 4096 4096 

99.3% 4070 4096 100% 4096 4096 

54.6% 1304 2390 100% 4096 4096 

4. Factorization 

4.1 LU Factorization 

In LU factorization, an m n real matrix A is factored 

into a lower triangular matrix L and a upper triangular 

matrix U, i.e. PA = LU, where P is a permutation matrix, 

at each iteration one column block is factored and a 

permutation matrix P is generated, if necessary, The LU 

factorization is performed in place, and P is stored as a 

one-dimensional array of the pivoting indices. Three 

variants exist for implementing LU factorization on 



 

Journal of Information Systems and Telecommunication, Vol. 4, No. 1, January-March 2016 23 

sequential machines. These three block algorithms of LU 

factorization can be constructed as follows. Suppose that 

we have factored A as A = LU. We write the factors in 

block form as follows: 
 

11 12 13 11 11 21 31

21 22 23 21 22 22 32

31 32 33 31 32 33 33

0 0

0 0

0 0

A A A L U U U

A A A L L U U

A A A L L L U

     
     


     
            (1) 

 

With these relationships, we can develop three 

variants by manipulating the order in which computations 

are formed and maintaining the final result of 

computations in place. These variants are called ijk 

variants [21] or, more specifically, right-looking, top- 

looking, and left-looking, respectively. They differ in 

which regions of data are accessed and computed during 

each reduction step.  

4.2 Cholesky Factorization 

Cholesky factorization factors an n n real, symmetric, 

positive definite matrix A into a lower triangular matrix L 

and its transpose   , i.e.,       or     where U is 

upper triangular). Because of the symmetric, positive 

definite property of the matrix A, Cholesky factorization 

is also performed in place on either an upper or lower 

triangular matrix and involves no pivoting. Three 

different variants of the Cholesky factorization can be 

developed as above [22]. 

4.3 QR Factorization 

Given an m n real matrix A, QR factorization factors 

A such that  
 











0

R
QA      (2) 

 

Where Q is an m m orthogonal matrix and R an n n 

upper triangular matrix Q is computed by applying a 

sequence of householder transformations to the current 

column block of the form,            
  where i 

=1,…., b. In one block QR algorithm Q can be applied or 

manipulated through the identity             
    where V is a lower triangular matrix of “householder” 

vectors    and T is an upper triangular matrix constructed 

from the triangular factors    and    of the householder 

transformations. When the factorization is complete, V is 

stored in the lower triangular part of the original matrix A, 

R is stored in the upper triangular part of A, and the   
   

are stored in the diagonal entries of A. The complete 

details of this algorithm are described in [23] and [24]. 

Both left- looking and right- looking variants can be 

constructed [25]. 

5. Analysis of Checkpointin 

The basic checkpointing operation works on a panel of 

blocks, where each block consists of X floating- point 

numbers, and the processors are logically configured in a 

P  Q mesh (See Fig.8,[26]) .The processors take the 

checkpoint with a combine operation of XOR or addition. 

This works in a spanning- tree fashion in three parts. The 

checkpoint is first taken row wise, then taken column 

wise, and then sent to PC. The first part therefore takes 

[log P] steps, and the second part takes [log Q] steps. 

Each step consists of sending and then performing either 

XOR or addition on X floating- point numbers. The third 

part consists of sending the X numbers to PC. 
 

 

Fig. 8. (a) Single- failure recovery model: after a failure, (b) 

Checkpointing the matrix of (a). 

We define the following terms: 

 : The time for performing a floating- point addition 

or XOR operation. 

α: The startup time for sending a message. 

β: The time to transfer one floating- point number. 

The first part takes [log P]           , the 

second part takes [log Q]           , and the third 

takes       . 

5.1 Implementations and Performance Evaluation 

For all of the implementations, the following set of 

tests was performed and timed: 

 Failure free algorithm without checkpointing. 

 Fault tolerant implementation with single 

checkpointing. 

 Single checkpointing implementation with one 

random failure. 

 Fault tolerant implementation with multiple 

checkpointing. 

 Multiple checkpointing implementations with 

multiple failures. 

Note that the failures were forced to occur at the last 

iteration before the first checkpoint. The performance 

results of the implementations are evaluated in terms of 

the following parameters: 

 Total elapsed wall-clock times of the algorithms in 

seconds       . 

 Checkpointing and recovery overheads in seconds 

       . 
 Checkpointing interval in iterations            . 
 Average checkpointing interval in seconds     

          .  

 Average checkpointing overhead in seconds 

              . 
  Total size of checkpoints in bytes (M). 



 

Hamidi, A New Method for Transformation Techniques in Secure Information Systems 

 

24 

 Extra memory usage in bytes (   . 

 Checkpointing rate in bytes per second (R) 

The checkpointing performed in these implementations 

consists of data communication and either XOR or 

addition of floating-point numbers. We define the 

checkpointing rate R as the amount of data checkpointed 

in bytes per second. This metric has been used to evaluate 

the performance of various checkpointing schemes [29-34]. 

In our case, the checkpointing rate is determined 

experimentally based on our analytic models of the fault- 

tolerant implementations. The total checkpointing 

overhead of the left-looking variant is too high compared 

with the right-looking variant without checkpointing (See 

Figures 9, 10 and 11). This checkpointing rate is used to 

compare the performance of the different fault tolerance 

techniques, Figures 12 and 13 plots the checkpointing rate 

for each implementation. 

 Parity-Based Technique: For the parity-based matrix 

operations, the total percentage overhead of checkpointing 

decreases as the problem size n increases. The total 

overhead of recovery is dominated by the time for taking 

the bitwise exclusive- or of each processor’s entire data. 

The time it takes to recover does not depend upon the 

location of the failure. The multiple checkpointing 

implementations show performance improvement. LU 

factorizations benefit relatively more from the multiple 

checkpointing because of pivoting. Figure 10 shows the 

checkpointing rate experimentally determined for each 

implementation .This presents the overall performance of 

the parity-based technique for matrix operations. 
 

 

 

Fig. 9. Left-looking LU, timing results 

 
 

 

Fig. 10. Left-looking Cholesky, timing results 

 
 

 

Fig. 11. Left-looking QR, timing results 



 

Journal of Information Systems and Telecommunication, Vol. 4, No. 1, January-March 2016 25 

 
 

 

Fig. 12. Experimental checkpointing rate 

 

 
 

 

Fig. 13. Experimental checkpointing rate 

Since the measured peak bandwidth of the network is 

64 Mbits per second, we expect that the checkpointing 

rate should be somewhat lower than 8 Mbytes per second 

considering synchronization, copying, performing XOR, 

and message latency and network contention. As shown 

in Figures 12 and 13 the checkpointing rate determined 

experimentally is between 2 and 4 Mbytes per second for 

all the matrix operations. The right-looking variant 

performs the best among the failure-free variants of each 

factorization because it benefits from less communication 

and more parallelism than the others. However, for the 

LU and Cholesky factorizations, the left-looking variants 

with checkpointing perform better than the right-looking 

variant with checkpointing. For the QR factorization, no 

top-looking variant exists, and the left-looking variant 

performs much slower than the right-looking variant. The 

total checkpointing overhead of the left-looking variant is 

too high compared with the right-looking variant without 

checkpointing (Figure 9-11). 

6. Conclusions 

The transformation technique transforms a system that 

does not tolerate a specific type of faults, called the fault-

intolerant system, to a system that provides a specific 

level of fault tolerance, namely recovery and/or safety. 

The advantage of transformation technique is that errors 

which are caused by permanent or transient failures in the 

system can be detected and corrected by using a very low 

overhead and at the original throughput. 

In This paper presents a model for executing certain 

scientific computations on a changing distributed computing 

platform .The model allows a distributed computation to run 

on a platform where individual processors may leave due to 

failures, unavailability, or heavy load, and where processors 

may enter during the computation. The model provides an 

interesting way to allow reliability in computations per 

formed on networks of computers. 

Systematic codes for data protection using the parity 

comparison method can be determined from general 

Convolutional codes by manipulating the matrix 

associated with such codes. 

These operations involve straightforward matrix 

operations similar to those supporting the normal matrix forms. 

The advantage of this method is that it is able to 

achieve very low overhead according to the specific 

characteristic of an application. The limitation of this 

method is that it is non-transparent and has to be designed 

according to the specific characteristic of an application. 
 

 

 

 

 

References 
[1] H. Hamidi, A. Vafaei, A.H. Monadjemi, “Algorithm based 

fault tolerant and check pointing for high performance 

computing systems,”J.Applied Sci., 9:3947-3956, 2009. 

 

 

 

 

 

 
 

[2] H. Hamidi, A.Vafaie, S. A. Monadjemi “Analysis and 

design of an ABFT and parity-checking technique in high 

performance computing systems” Journal of Circuits, 



 

Hamidi, A New Method for Transformation Techniques in Secure Information Systems 

 

26 

Systems, and Computers (JCSC), JCSC Vol.21, No. 3, 

May 2012. 

[3] H. Hamidi, A.Vafaie, S. A. Monadjemi. Analysis and 

evaluation of a new algorithm based fault tolerance for 

computing systems. International Journal of Grid and High 

Performance Computing, 4(1), 37–51. 2012. 

[4] H. Hamidi, A.Vafaie, S. A. Monadjemi “A Framework for 

ABFT Techniques in the Design of Fault-Tolerant 

Computing Systems”, EURASIP Journal on Advances in 

Signal Processing, Springer, Vol.2011:90, October 2011. 

[5] H. Hamidi, A.Vafaie, S. A. Monadjemi, “A Framework for 

Fault Tolerance Techniques in the Analysis and Evaluation 

of Computing Systems” International Journal of Innovative 

Computing, Information and Control (IJICIC), Vol.8, No.7, 

July 2012.  

[6] K.H. Huang, J.A. Abraham, “Algorithm-Based Fault 

Tolerance for Matrix Operations.” IEEE Trans. Computers, 

vol. 33, pp. 518-528, 1984. 

[7] Z.Chen, “Extending Algorithm-based Fault Tolerance to 

Tolerate Fail-stop Failures in High Performance Distributed 

Environments,” Proceedings of the 22nd IEEE International 

Parallel & Distributed Processing Symposium, DPDNS'08 

Workshop, Miami, FL, USA, April 14-18, 2008.  

[8] C.N.Zhang, X.W. Liu, “An algorithm based mesh check-

sum fault tolerant scheme for stream ciphers,” International 

Journal of Communication Networks and Distributed 

Systems, Vol.3, No.3, pp.217-233, June 2009.  

[9] S. Sundaram, C. N. Hadjicostis, “Fault-Tolerant 

Convolutional via Chinese Remainder Codes Constructed 

from Non-Coprime Moduli,”IEEE Transactions on Signal 

Processing, Vol. 56, No. 9, pp. 4244-4254, September 2008. 

[10] T.Roche, M. Cunche, J.L Roch, "Algorithm-Based Fault 

Tolerance Applied to P2P Computing Networks," ap2ps, 

pp.144-149, 2009 First International Conference on 

Advances in P2P Systems, 2009. 

[11] D. Costello, S. Lin, Error Control Coding Fundamentals 

and Applications, 2nd edition, Pearson Education Inc., NJ, 

U.S.A., 2004. 

[12] Robert H. Morelos-Zaragoza, The Art of Error Correcting 

Coding, 2nd Edition, John Wiley & Sons, ISBN: 

0470015586, 2006. 

[13] G.Bosilca, R.Delmas, J. Dongarra, J. Langou, “Algorithm-

based fault tolerance applied to high performance 

computing,”Journal of Parallel and Distributed Computing, 

Elsevier, Vol.69, No.4, pp.410-416, April 2009.  

[14] G. Robert Redinbo, "Wavelet Codes for Algorithm-Based 

Fault Tolerance Applications," IEEE Transactions on 

Dependable and Secure Computing, vol. 7, no. 3, pp. 315-

328, July-Sept. 2010. 

[15] G.Robert Redinbo, “Generalized Algorithm-Based Fault 

Tolerance: Error Correction via Kalman Estimation”, IEEE 

Transactions ON Computers, vol. 47, no. 6, Jun 1998. 

[16] G. Robert Redinbo, "Failure-Detecting Arithmetic 

Convolutional Codes and an Iterative Correcting Strategy," 

IEEE Transactions on Computers, vol. 52, no. 11, pp. 

1434-1442, Nov. 2003. 

[17] S.Veeravalli, “Fault tolerance for arithmetic and logic 

UNIT,” IEEE SOUTHEASTCON,’09, 2009, pp. 329 – 334. 

[18] J. Choi, J.J. Dongarra, S. Ostrouchov, A. P. Petitet, D. 

W.Walker, and R. C.Whaley. “The design and 

implementation of the ScaLAPACK LU, QR, and Cholesky 

factorization routines,” Scientific Programming, 1996. 

[19] J. Choi, J. J. Dongarra, and D.W.Walker, “PB-BLAS: A set 

of parallel block basic linear algebra subprograms,” 

Concurrency Practice and Experience, 1996. 

[20] J. J. Dongarra, J, Du Croz, S. Hammarling, and I. Duff, “A 

set of level 3 basic linear algebra subprograms,” ACM 

Transactions on Mathematical Software, 18(1):pp.1-17, 1990. 

[21] S. Ekici, S. Yildirim, M.Poyraz, “A transmission line fault 

locator based on Elman recurrent networks,” Applied Soft 

Computing, Elsevier, Volume 9, Issue 1, pp.341-347, 2009. 

[22] X.She, S.Trimberger, “Scheme to minimize short effects of 

single-event upsets in triple-modular redundancy (TMR), 

IET Computers & Digital Techniques, 4(1):50, 2010. 

[23] J. J. Dongarra and R. C. Whaley, A user’s guide to the 

BLACS v1.0.LAPACK Working Note 94, Technical 

Report CS-95-281, University of Tennessee, 1995. 

[24] A. A.Kumar, A. Makur, “Improved coding-theoretic and 

subspace-based decoding algorithms for a wider class of 

DCT and DST codes,” IEEE Transactions on Signal 

Processing Vol. 58, Issue 2, pp. 695-708, 2010.  

[25] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, “The 

performance of consistent check pointing,” In 11th 

Symposium on Reliable Distributed Systems, 1992, pp. 39-47. 

[26] R.H. Morelos-Zaragoza, “The Art of Error Correcting 

Coding, Second Edition,” John Wiley & Sons, Ltd. ISBN: 

0-470-01558-6, 2006. 

[27] J. S. Plank and K. Li. Ickp, “A consistent checkpointer for 

multicomputer,” IEEE Parallel & Distributed Technology, 

2(2):62-67, 1994. 

[28] J.Y. Jou and J. A.Abraham, “Fault tolerant matrix arithmetic 

and signal processing on highly concurrent computing 

structures,” Proc. IEEE, vol, no.5, pp.732-741, 1986.  

[29] C. N. Hadjicostis, “Coding Approaches to Fault Tolerance 

in Dynamic Systems,” Ph.D thesis, EECS department, 

Massachusetts Institute of Technology, Cambridge, 

Massachusetts, 1999. 

[30] C. N. Hadjicostis, “Coding Approaches to Fault Tolerance 

in Combinational and Dynamic Systems,” Boston, 

Massachusetts: Kluwer Academic Publishers, 2002. 

[31] Y. Kim, “Fault Tolerant Matrix Operations for Parallel and 

Distributed Systems,” Ph.D dissertation, Univ. of 

Tennessee, June 1996. 

[32] J. S. Plank, Y. Kim, and J. Dongarra, “Algorithm-based 

diskless checkpointing for fault tolerant matrix operations,” 

In 25th International Symposium on Fault-Tolerant 

Computing, Pasadena, CA, June 1995. 

[33] H. Hamidi, An Approach to Fault Detection and Correction 

in Design of Fault Tolerant Computing Systems Using of 

Turbo codes, International Journal of Industrial 

Mathematics, 2016, (Accepted for Publication). 

 

 

 
Hodjatollah Hamidi, born 1978, in shazand Arak, Iran, He got his 
Ph.D in computer engineering. His main research interest areas 
are Information Technology, Fault-Tolerant systems (fault-tolerant 
computing, error control in digital designs) and applications and 
reliable and secure distributed systems and e- commerce. Since 
2013 he has been a faculty member at the IT group of K. N. Toosi 
University of Technology, Tehran Iran. Department of Industrial 
Engineering , K. N. Toosi University of Technology. 

 

 

 


